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Abstract Graph mining methods enumerate frequently appearing subgraph patterns, which
can be used as features for subsequent classification or regression. However, frequent pat-
terns are not necessarily informative for the given learning problem. We propose a mathe-
matical programming boosting method (gBoost) that progressively collects informative pat-
terns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations.
To apply the boosting method to graph data, a branch-and-bound pattern search algorithm
is developed based on the DFS code tree. The constructed search space is reused in later
iterations to minimize the computation time. Our method can learn more efficiently than the
simpler method based on frequent substructure mining, because the output labels are used as
an extra information source for pruning the search space. Furthermore, by engineering the
mathematical program, a wide range of machine learning problems can be solved without
modifying the pattern search algorithm.
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1 Introduction

Graphs are general and powerful data structures that can be used to represent diverse kinds
of objects. Much of the real world data is represented not as vectors, but as graphs including
sequences and trees, for example, biological sequences (Durbin et al. 1998), semi-structured
texts such as HTML and XML (Abiteboul et al. 2000), RNA secondary structures (Hamada
et al. 2006), and so forth. Probably graphs are most commonly used in chemoinformat-
ics (Gasteiger and Engel 2003), where chemical compounds are represented as graphs and
their bioactivities or chemical reactivities are predicted by a learning machine. When the
activity is represented as a binary label, it is often called the Structure-Activity Relationship
(SAR) analysis. On the other hand, if a real-valued label is used, it is called the Quanti-
tative Structure-Activity Relationship (QSAR) analysis. To this aim, several off-the-shelf
molecular property descriptors are developed (James et al. 2004; Duran et al. 2002), and
used successfully with conventional learning machines such as the support vector machines
(SVMs) (Schölkopf and Smola 2002).

However, in other situations such as protein (Borgwardt et al. 2006) or RNA (Hamada et
al. 2006) graph mining, there are no graph descriptors available. Thus, it is a central issue
how to build the interface between graph data and existing machine learning algorithms.
One way is to design a pairwise similarity measure between two graphs. When the similar-
ity function is proven to be positive definite, it is called a kernel function (Schölkopf and
Smola 2002). Several kernels have been proposed so far (Kashima et al. 2003; Gärtner et
al. 2003; Ralaivola et al. 2005; Fröhrich et al. 2006; Mahé et al. 2005; Mahé et al. 2006;
Horváth et al. 2004). The basic idea of those kernel methods is to represent a graph as a very
high dimensional space of indicators of substructures (i.e., walks or trees), and then compute
the dot product between two feature vectors efficiently by a recursive algorithm. Therefore,
the kernel methods take all substructures into account. This all-features property is not al-
ways beneficial. Especially, when only a few small substructures determine the output label
completely, it is desirable to single out the substructures rather than taking other features
into account. On the other hand, if the information is distributed over many substructures, it
would be meaningless to try to select a few substructures. In drug discovery, it is desired to
pick up important substructures to explain why the drug candidate (i.e., graph) is supposed
to work as a drug. Thus, at least in this case, the prediction accuracy is not the only goal. It
is required for humans to interpret the prediction rules. Prediction rules of kernel methods
are certainly not easy to interpret, because the features are numerous and implicit.

Frequent substructure mining methods, such as AGM (Inokuchi 2005), Gaston (Nijssen
and Kok 2004) or gSpan (Yan and Han 2002a), have been applied to enumerate frequently
appearing subgraph patterns. Then, a graph is represented as a vector of binary indicators,
and an existing machine learning method such as SVM (Schölkopf and Smola 2002) is
applied to the vector. Especially when L1-SVM (Schölkopf and Smola 2002), LASSO (Tib-
shrani 1996) or related methods are used, one can identify a few salient substructures as
well. Such an approach is commonly practiced in chemoinformatics (Helma et al. 2004;
Kazius et al. 2006). We call it a “two step” approach, because the mining part (e.g., gSpan)
and the learning part (e.g., SVM) are completely separated. However, Wale and Karypis
(2006) recently argued that the two step approach is too time and memory consuming. To
achieve the best accuracy in chemoinformatics data, one needs relatively large substructures
up to 10 edges (James et al. 2004). It is harmful in accuracy to restrict the minimum support
of substructures, because infrequent ones could also be crucially important for some graphs
in the database.

In several cases (Morishita and Sese 2000; Takabayashi et al. 2006; Bringmann et al.
2006), the frequent mining is replaced with discriminative substructure mining. First, the
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qualifying substructures are enumerated based on a statistical criterion such as information
gain. Then, a machine learning method is applied to the feature space of substructure in-
dicators. However, in principle, the salient patterns depend on the optimal solution of the
subsequent learning problem. It is very difficult to theoretically guarantee that the statistical
criterion provides good features for the subsequent learning algorithm. This is the problem
of all filter methods. For related discussions, see (Kohavi and John 1997). Additionally, one
has to redesign the statistical criterion to deal with a different machine learning problem.
For example, classification and regression problems require different criteria and thus pat-
tern search algorithms should be based on different pruning conditions.

Our method learns from graph data using mathematical programming. We employ LP-
Boost (Demiriz et al. 2002) as a base algorithm and combine it with a substructure mining
algorithm. Due to the large number of possible patterns, our mathematical program has an
intractable number of variables. To solve the large problem, the column generation tech-
nique (Luenberger 1969) is applied: A pattern feature is added in each iteration, and the
restricted program of growing size is solved repeatedly. By observing the duality gap, we
can monitor how close the current solution is to the optimal solution. This allows us to define
the termination condition in a theoretically controlled way. In an iteration, a new pattern that
optimizes a gain function is searched in the space of graphs. We employ a branch-and-bound
search method to find it efficiently. As a canonical search space, we use the DFS (Depth First
Search) code tree (Yan and Han 2002a). In each search, the optimal pattern is searched for
based on the gain function with different parameters. In large datasets, we found it too time
consuming to reconstruct the search space from scratch in each iteration. To alleviate this
problem, the search space is stored in memory and progressively extended. In comparison
to the naïve method that enumerates all the patterns first and solves the mathematical pro-
gramming afterwards, our progressive method is more efficient in time and in the size of
search space.

For numerical vectors, a number of mathematical programming-based methods (Boyd
and Vandenberghe 2004) have been proposed and commonly used. Binary classification
(Demiriz et al. 2002; Schölkopf and Smola 2002) and least squares regression (Tibshrani
1996) are among the most fundamental examples. We will show that, using the same pattern
search algorithm, both classification and regression problems can be solved by engineering
the mathematical program. It is regarded as an advantage over the filter methods (Bringmann
et al. 2006) that our approach is easily extendable to a wide range of machine learning
problems.

This paper is based on two previous conference papers (Kudo et al. 2005; Saigo et al.
2006). Kudo et al. (2005) proposed to combine AdaBoost and the optimal pattern search
algorithm. However, AdaBoost is less efficient, because it takes significantly more itera-
tions than our mathematical programming method. Empirical comparison will be reported in
Sect. 6. The direct predecessor of this paper is the MLG’06 paper by Saigo et al. (2006) that
includes a linear programming-based regression method for the QSAR analysis. This paper,
however, has significantly more contents such as the empirical comparison to AdaBoost, the
quadratic programming-based regression method, in-depth description of pattern search and
so forth.

The rest of this paper is organized as follows: Sect. 2 introduces the binary graph clas-
sification method based on a linear program. In Sect. 2.1, the pattern search algorithm re-
peatedly called from the mathematical program is presented. In Sect. 3, our mathematical
programming approach is applied to least squares regression. Sect. 4 shows the experimental
results on chemoinformatics benchmark datasets. The experiments for investigating compu-
tational costs are summarized in Sect. 5. In Sect. 6, the difference between our method and
AdaBoost is discussed. Section 7 concludes the paper with general discussions.
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2 Graph classification with linear programming

In this paper, we deal with undirected, labeled and connected graphs. To be more precise,
we define the graph and subgraph isomorphism as follows:

Definition 1 (Labeled connected graph) A labeled graph is represented in a 4-tuple G =
(V ,E, L, l), where V is a set of vertices, E ⊆ V × V is a set of edges, L is a set of labels,
and l : V ∪ E → L is a mapping that assigns labels to the vertices and edges. A labeled
connected graph is a labeled graph such that there is a path between any pair of vertices.

Definition 2 (Subgraph isomorphism) Let G′ = (V ′,E′, L′, l′) and G = (V ,E, L, l) be la-
beled connected graphs. A graph G′ is subgraph-isomorphic to a graph G (G′ ⊆ G) iff there
exists an injective function φ : V ′ → V , s.t., (1) ∀v ∈ V, l(v) = l′(φ(v)), (2) ∀(v1, v2) ∈
E, (φ(v1),φ(v2)) ∈ E′ and (3) l(v1, v2) = l′(φ(v1),φ(v2)). If G′ is a subgraph of G, then
G is a supergraph of G′.

We start from defining the binary classification problem of graphs, and the regression
problem will be discussed in Sect. 3. In graph classification, the task is to learn a pre-
diction rule from the training examples {(Gn, yn)}�

n=1, where Gn is a training graph and
yn ∈ {+1,−1} is the associated class label. Let T be the set of all patterns, i.e., the set of
all subgraphs included in at least one training graph. Then, each graph Gn is encoded as a
|T |-dimensional vector xn,

xn,t = I (t ⊆ Gn), ∀t ∈ T ,

where I (·) is 1 if the condition inside is true and 0 otherwise. This feature space is illustrated
in Fig. 1.

Based on the binary representation of xn,t , individual stumps, or hypotheses is defined
as:

h(x; t,ω) = ω(2xt − 1),

where ω ∈ Ω = {−1,1} is a parameter. This parameter allows us to check not only the
presence of subgraphs, but also the absence of subgraphs in training graphs.

Our prediction rule is a convex combination of simple classification stumps h(x; t,ω),
and has the form

f (x) =
∑

(t,ω)∈T ×Ω

αt,ωh(x; t,ω), (1)

where αt,ω is a weight such that
∑

(t,ω)∈T ×Ω αt,ω = 1 and αt,ω ≥ 0.
This is a linear discriminant function in an intractably large dimensional space. To obtain

an interpretable rule, we need to obtain a sparse weight vector α, where only a few weights

Fig. 1 Feature space based on
subgraph patterns. The feature
vector consists of binary pattern
indicators



Mach Learn (2009) 75: 69–89 73

are nonzero. In the following, we will present a linear programming approach for efficiently
capturing patterns with non-zero weights.

To obtain a sparse weight vector, we use the formulation of LPBoost (Demiriz et al.
2002). Given the training data {(xn, yn)}�

n=1, the training problem is formulated as

min
α,ξ ,ρ

−ρ + D

�∑

n=1

ξn (2)

s.t.
∑

(t,ω)∈T ×Ω

ynαt,ωh(xn; t,ω) + ξn ≥ ρ, ξn ≥ 0, n = 1, . . . , �, (3)

∑

(t,ω)∈T ×Ω

αt,ω = 1, αt,ω ≥ 0,

where ρ is the soft-margin, separating negative from positive examples, D = 1
ν�

, ν ∈ (0,1)

is a parameter controlling the cost of misclassification which has to be found using model
selection techniques, such as cross-validation. Nevertheless, it is known that the optimal
solution has the following ν-property:

Theorem 1 (Rätsch et al. 2002) Assume that the solution of (2) satisfies ρ ≥ 0. The follow-
ing statements hold:

1. ν is an upperbound of the fraction of margin errors, i.e., the examples with

∑

(t,ω)∈T ×Ω

ynαt,ωh(xn; t,ω) < ρ.

2. ν is a lowerbound of the fraction of the examples such that

∑

(t,ω)∈T ×Ω

ynαt,ωh(xn; t,ω) ≤ ρ.

Directly solving this optimization problem is intractable due to the large number of vari-
ables in α. So we solve the following equivalent dual problem instead.

min
λ,γ

γ (4)

s.t.
�∑

n=1

λnynh(xn; t,ω) ≤ γ, ∀(t,ω) ∈ T × Ω, (5)

�∑

n=1

λn = 1, 0 ≤ λn ≤ D, n = 1, . . . , �.

After solving the dual problem, the primal solution α is obtained from the Lagrange multi-
pliers (Demiriz et al. 2002).

The dual problem has a limited number of variables, but a huge number of constraints.
Such a linear program can be solved by the column generation technique (Luenberger 1969):
Starting with an empty pattern set, the pattern whose corresponding constraint is violated the
most is identified and added iteratively. Each time a pattern is added, the optimal solution is
updated by solving the restricted dual problem. Denote by λ(k), γ (k) the optimal solution of
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the restricted problem at iteration k = 0,1, . . . , and denote by H(k) ⊆ T × Ω the hypothesis
set at iteration k. Initially, H(0) is empty and λ(0)

n = 1/�. The restricted problem is defined
by replacing the set of constraints (5) with

l∑

n=1

λ(k)
n ynh(xn; t,ω) ≤ γ, ∀(t,ω) ∈ H(k).

After solving the problem, the hypothesis set H(k) is updated to H(k+1) by adding a hypoth-
esis. Several criteria have been proposed to select the new hypothesis (du Merle et al. 1999),
but we adopt the most simple rule that is amenable to graph mining: We select the hypothesis
which violates the constraint with the largest margin.

(t∗,ω∗) = argmax
t∈T ,ω∈Ω

�∑

n=1

λ(k)
n ynh(xn; t,ω). (6)

The hypothesis set is updated as H(k+1) = H(k) ∪ {(t∗,ω∗)}. In the next section, we discuss
how to efficiently find the optimal hypothesis in detail.

One of the big advantages of our method is that we have a stopping criterion that guar-
antees that the optimal solution of (2) is found: If there is no (t,ω) ∈ T × Ω such that

�∑

n=1

λ(k)
n ynh(xn; t,ω) > γ (k), (7)

then the current solution is the optimal dual solution. Empirically, the patterns found in the
last few iterations have negligibly small weights. The number of iterations can be decreased
by relaxing the condition as

�∑

n=1

λ(k)
n ynh(xn; t,ω) > γ (k) + ε. (8)

Let us define the primal objective function as V = −ρ + D
∑�

n=1 ξn. Due to the convex
duality, we can guarantee that, for the solution obtained from the early termination (8), the
objective satisfies V ≤ V ∗ + ε, where V ∗ is the optimal value with the exact termination
(7) (Demiriz et al. 2002). In our experiments, ε = 0.01 is always used.

2.1 Optimal pattern search

Our search strategy is a branch-and-bound algorithm that requires a canonical search space
in which a whole set of patterns are enumerated without duplication. As the search space, we
adopt the DFS (depth first search) code tree (Yan and Han 2002a). The basic idea of the DFS
code tree is to organize patterns as a tree, where a child node has a supergraph of the parent’s
pattern (Fig. 2). A pattern is represented as a text string called the DFS code. The patterns
are enumerated by generating the tree from the root to leaves using a recursive algorithm.
To avoid duplications, node generation is systematically done by rightmost extensions. See
Appendix for details about the DFS code and the rightmost extension.

All embeddings of a pattern in the graphs {Gn}�
n=1 are maintained in each node. If a pat-

tern matches a graph in different ways, all such embeddings are stored. When a new pattern
is created by adding an edge, it is not necessary to perform full isomorphism checks with
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Fig. 2 Schematic figure of the
tree-shaped search space of graph
patterns (i.e., the DFS code tree).
To find the optimal pattern
efficiently, the tree is
systematically expanded by
rightmost extensions

respect to all graphs in the database. A new list of embeddings are made by extending the
embeddings of the parent (Yan and Han 2002a). Technically, it is necessary to devise a data
structure such that the embeddings are stored incrementally, because it takes a prohibitive
amount of memory to keep all embeddings independently in each node.

As mentioned in (6), our aim is to find the optimal hypothesis that maximizes the gain
g(t,ω).

g(t,ω) =
�∑

n=1

λ(k)
n ynh(xn; t,ω). (9)

For efficient search, it is important to minimize the size of the search space. To this aim, tree
pruning is crucially important: Suppose the search tree is generated up to the pattern t and
denote by g∗ the maximum gain among the ones observed so far. If it is guaranteed that the
gain of any supergraph t ′ is not larger than g∗, we can avoid the generation of downstream
nodes without losing the optimal pattern. We employ the following pruning condition.

Theorem 2 (Morishita 2001; Kudo et al. 2005) Let us define

μ(t) = max

{
2

∑

{n|yn=+1,t⊆Gn}
λ(k)

n −
�∑

n=1

ynλ
(k)
n ,2

∑

{n|yn=−1,t⊆Gn}
λ(k)

n +
�∑

n=1

ynλ
(k)
n

}
.

If the following condition is satisfied,

g∗ > μ(t), (10)

the inequality g(t ′,ω′) < g∗ holds for any t ′ such that t ⊆ t ′ and any ω′ ∈ Ω .

Proof By definition,

g(t ′,ω′) =
�∑

n=1

λ(k)
n ynω

′(2I (t ′ ⊆ Gn) − 1).

If we focus on the case ω′ = +1, then

g(t ′,+1) = 2
∑

{n|t ′⊆Gn}
ynλ

(k)
n −

�∑

n=1

ynλ
(k)
n
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≤ 2
∑

{n|yn=+1,t ′⊆Gn}
λ(k)

n −
�∑

n=1

ynλ
(k)
n

≤ 2
∑

{n|yn=+1,t⊆Gn}
λ(k)

n −
�∑

n=1

ynλ
(k)
n .

The second inequality follows from the fact that

{n|yn = +1, t ′ ⊆ Gn} ⊆ {n|yn = +1, t ⊆ Gn}.

Similarly,

g(t ′,−1) ≤ 2
∑

{n|yn=−1,t⊆Gn}
λ(k)

n +
�∑

n=1

ynλ
(k)
n .

Therefore, μ(t) is an upperbound of g(t ′,+1) and g(t ′,−1). If the current maximum gain
g∗ is more than μ(t), it is guaranteed that there is no downstream pattern whose gain is
larger than g∗. �

The gBoost algorithm is summarized in Algorithms 1 and 2. Algorithm 1 is exactly the
same as LPBoost (Demiriz et al. 2002), so it does not contain anything novel. Our contribu-
tion is to combine it with the pattern search algorithm.

2.2 Reusing the search space

Our method calls the pattern search algorithm repeatedly with different parameters λ(k). In
each iteration, the search tree is generated until the pruning condition is satisfied. Creating a
new node is time consuming, because the list of embeddings is updated, and the minimality
of the DFS code has to be checked (see Appendix). In our previous paper (Saigo et al. 2006),
the search tree is erased after the optimal pattern is found, and a new search tree is built from
scratch in the next iteration. In this paper, we maintain the whole search tree, including all
embeddings, in the main memory for better efficiency. Then, node creation is necessary only
if it is not created in previous iterations. Naturally this strategy requires more memory, but
we did not experience any overflow problems in our experiments with 8 GB memory.

Algorithm 1 gBoost algorithm: main part

1: H(0) = ∅, λ(0)
n = 1/�, k = 0

2: loop
3: Find the optimal hypothesis (t∗,ω∗) based on λ(k) � Algorithm 2
4: if termination condition (8) holds then
5: break
6: end if
7: H(k+1) = H(k) ∪ {(t∗,ω∗)}
8: Solve the restricted dual problem (4) to obtain λ(k+1)

9: k = k + 1
10: end loop
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Algorithm 2 Finding the Optimal Pattern
1: procedure OPTIMAL PATTERN

2: Global variables: g∗,ω∗, t∗
3: g∗ = −∞
4: for t ∈ DFS codes with single nodes do
5: project(t )
6: end for
7: return (t∗,ω∗)
8: end procedure
9: function PROJECT(t )

10: if t is not a minimum DFS code then
11: return
12: end if
13: if pruning condition (10) holds then � Theorem 2
14: return
15: end if
16: if g(t,ω) > g∗ for any ω ∈ Ω then
17: g∗ = g(t,ω), t∗ = t , ω∗ = ω

18: end if
19: for t ′ ∈ rightmost extensions of t do
20: project(t ′)
21: end for
22: end function

3 Extension to least squares regression

One merit of our mathematical programming-based approach is that a wide range of ma-
chine learning problems are solved based on the same pattern search. In this section, we
particularly focus on least squares regression. It is possible to apply our approach to, e.g.,
one-class classification (Rätsch et al. 2002), multi-class classification (Freund and Schapire
1997), hierarchical classification (Cai and Hofmann 2004), 1.5-class classification (Yuan
and Casasent 2003) and knowledge-based support vector machines (Le et al. 2006). Math-
ematical programs are commonly used in machine learning, so certainly there are more
applications.

Suppose we are given a training data set {(Gn, yn)}�
n=1, but now yn may take on any real

value. We use the same definition for a hypothesis h(x, t,ω) and its corresponding weight
αt,ω as those in the classification case. The regression function is defined as

f (x) =
∑

(t,ω)∈T ×Ω

αt,ωh(x; t,ω) + b,

where b is a newly introduced bias term. The learning problem is written as

min
α,b

C
∑

(t,ω)∈T ×Ω

|αt,ω| + 1

2

l∑

n=1

( ∑

(t,ω)∈T ×Ω

αt,ωh(xn; t,ω) + b − yn

)2

.
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Note that we introduced the L1-norm regularizer to enforce sparsity to parameter vectors.
This is exactly the same learning problem as that of LASSO (Tibshrani 1996). The learning
problem above translates to the following quadratic program.

min
α,ξ ,b

C
∑

(t,ω)∈T ×Ω

(α+
t,ω + α−

t,ω) + 1

2

�∑

n=1

ξ 2
n (11)

s.t.
∑

(t,ω)∈T ×Ω

αt,ωh(xn; t,ω) + b − yn ≤ ξn, n = 1, . . . , �, (12)

yn −
∑

(t,ω)∈T ×Ω

αt,ωh(xn; t,ω) − b ≤ ξn, n = 1, . . . , �, (13)

α+
t,ω, α−

t,ω ≥ 0, ∀(t,ω) ∈ T × Ω, (14)

where ξn is a slack variable, αt,ω = α+
t,ω − α−

t,ω . The dual problem is described as

min
u

1

2

�∑

n=1

(u+
n + u−

n )2 −
�∑

n=1

yn(u
+
n − u−

n ) (15)

s.t. −C ≤
�∑

n=1

(u+
n − u−

n )h(xn; t,ω) ≤ C, ∀(t,ω) ∈ T × Ω, (16)

�∑

n=1

u+
n − u−

n = 0, (17)

u+
n , u−

n ≥ 0, n = 1, . . . , �. (18)

Unlike the classification case, the dual constraint (16) is two-sided. Therefore, the gain func-
tion for regression has a slightly different form:

greg(t,ω) =
∣∣∣∣∣

�∑

n=1

u(k)
n h(xn; t,ω)

∣∣∣∣∣.

However, we can still use the pruning condition (Theorem 2), because the same proposition
holds for greg .

4 Experiments

In this section, our method is benchmarked with publicly available chemical compound
datasets in classification and regression problems.
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Table 1 Datasets Summary.
Mutag, CPDB, CAS and AIDS
are classification problems and
EDKB-AR, EDKB-ER,
EDKB-ES are regression
problems, respectively. The
number of positive data (POS)
and negative data (NEG) are only
provided for classification
datasets. Average number of
atoms (ATOM) and bonds
(BOND) are shown for each
dataset

Classification ALL POS NEG ATOM BOND

Mutag 188 125 63 45.1 47.1

CPDB 684 341 343 14.1 14.6

CAS 4337 2401 1936 29.9 30.9

AIDS (CAvsCM) 1503 422 1081 58.9 61.4

Regression ALL ATOM BOND

EDKB-AR 146 19.5 21.1

EDKB-ER 131 19.2 20.7

EDKB-ES 59 18.2 19.7

4.1 Classification (SAR analyses)

For classification, we used three mutagenicity datasets, Mutag,1 CPDB,2 CAS3 and the
AIDS antiviral screen dataset.4 The statistics of the datasets are summarized in Table 1.
We compared our method (gBoost) with marginalized graph kernel (MGK) (Kashima et al.
2003) and SVM with frequent mining (freqSVM) in 10-fold cross validation experiments.
In FreqSVM, the frequent patterns are mined first, and then SVM is applied to the feature
space created by the patterns (Helma et al. 2004; Kazius et al. 2006; Wale and Karypis 2006).
These three methods are implemented by ourselves. In addition, we quote the 10 fold cross
validation results by Gaston (Kazius et al. 2006), Correlated Pattern Mining (CPM) (Bring-
mann et al. 2006), and MOLFEA (Helma et al. 2004) from respective papers. The quoted
accuracies are all based on 10-fold cross validation. In literature (Kazius et al. 2006; Helma
et al. 2004; Bringmann et al. 2006), the accuracies of Gaston, CPM, and MOLFEA are
shown for all possible regularization parameters. For each method, the best test accuracy is
taken. Notice that they might not be compared with our results precisely, because experi-
mental settings are slightly different. Please see the end of this section for details.

For gBoost, the maximum pattern size (maxpat), which in our case corresponds to the
maximum number of nodes in a subgraph, was constrained up to 10, and we did not use
the minimum support constraint at all. The regularization parameter ν is chosen from {0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. We used chemcpp5 for computing the MGK. For MGK, the
termination probability was chosen from {0.1,0.2, . . . ,0.9}, and the C parameter of SVM
was chosen from {0.1,1,10,100,1000,10000}. For freqSVM, frequent patterns are first
mined by gSpan with maximum pattern size 10 and minimum support threshold 1% for
Mutag and CPDB, 10% for CAS and AIDS. Then SVM was trained with C parameter from
the range {0.1,1,10,100,1000,10000}. To compare with the quoted results as fairly as
possible, the best test accuracy is shown for all methods.

Table 2 summarizes the results. Overall, gBoost was competitive among the other state-
of-the-art methods. In Mutag, CAS and CPDB, gBoost was the best method, but in AIDS,
CPM performed best in accuracy and freq-SVM performed best in AUC. Notice that CPM’s

1http://www.predictive-toxicology.org.
2Available from the supplementary information of (Helma et al. 2004).
3http://www.cheminformatics.org/datasets/bursi/.
4http://dtp.nci.nih.gov/docs/aids/aids_screen.html.
5http://chemcpp.sourceforge.net/html/index.html.

http://www.predictive-toxicology.org
http://www.cheminformatics.org/datasets/bursi/
http://dtp.nci.nih.gov/docs/aids/aids_screen.html
http://chemcpp.sourceforge.net/html/index.html
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Table 2 Classification performance obtained by 10-fold cross validation in the classification datasets mea-
sured by the accuracy (ACC) and the area under the ROC curve (AUC). We obtained the results of MGK,
freqSVM and gBoost from our implementations, but the other results are quoted from the literature. The best
results are highlighted in bold fonts

Method Mutag CAS CPDB AIDS (CAvsCM)

ACC AUC ACC AUC ACC AUC ACC AUC

Gaston (Kazius et al. 2006) – – 0.79 – – – – –

MOLFEA (Helma et al. 2004) – – – – 0.785 – – –

CPM (Bringmann et al. 2006) – – 0.801 – 0.760 – 0.832 –

MGK 0.808 0.901 0.771 0.763 0.765 0.756 0.762 0.760

freqSVM 0.808 0.906 0.773 0.843 0.778 0.845 0.782 0.808

gBoost 0.852 0.926 0.825 0.889 0.788 0.854 0.802 0.774

good result on AIDS is based on sequence patterns. When subgraph patterns are used, the
best result was 0.767. The relatively poor result of gBoost in AIDS in comparison with
freqSVM could be attributed to misselection of features by the L1 regularizer. It is known
that the L1 regularizer selects too few features occasionally (Zou and Hastie 2005). One
way to weaken sparsity is to introduce an L2 regularizer in addition to the L1 regularizer
like the elastic net (Zou and Hastie 2005). The computation time of gBoost is decomposed
into mining time and LP time. The former is used for expanding and traversing the pattern
space, and the latter is to solve the series of restricted dual problems. For CAS, the mining
time was 1370 seconds and the LP time was 1110 seconds, respectively, on a standard PC
with AMD Opteron 2.2 GHz and 8 GB memory. The computation time can be reduced in
several ways: (1) restricting the pattern to simpler ones, e.g., walks or trees, (2) limiting the
pattern set a priori, e.g., by the correlation with class labels (Bringmann et al. 2006) or by
the minimum support constraints (Kazius et al. 2006). However, in any case, informative
patterns might be lost in exchange for better efficiency.

The top 20 discriminative subgraphs for CPDB are displayed in Fig. 3. We found that
the top 3 substructures with positive weights (0.0672,0.0656, 0.0577) correspond to known
toxicophores (Kazius et al. 2006). They correspond to aromatic amine, aliphatic halide,
and three-membered heterocycle, respectively. In addition, the patterns with weights 0.0431,
0.0412, 0.0411 and 0.0318 seem to be related to polycyclic aromatic systems.

To characterize the influence of the regularization parameter ν, gBoost is applied to
CPDB with ν = {0.1, . . . ,0.8}. Table 4 shows the number of “active patterns”, the size of
the searched space, the number of iterations until convergence, the margin, and the training
accuracy. Here, active patterns are defined as those with non-zero weights,

A = {
t ∈ T | αt,ω �= 0,ω ∈ {−1,1}} .

For this experiment, we set the maximum pattern size to 10. When ν is low, gBoost creates
a complex classification rule with many active patterns so that it can classify the training
examples completely. As ν is increased, the regularization takes effect and the rule gets sim-
pler with a smaller number of active patterns. At the same time, the active patterns become
smaller in size (Fig. 4).

Experimental settings of quoted results We quoted the accuracies of MOLFEA, Gaston
and CPM reported in literature in Table 2. In the following, we briefly summarize the exper-
imental settings of these results.
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Fig. 3 Top 20 discriminative
subgraphs from the CPDB
dataset. Each subgraph is shown
with the corresponding weight,
and ordered by the absolute value
from the top left to the bottom
right. H atom is omitted, and C
atom is represented as a dot for
simplicity. Aromatic bonds
appeared in an open form are
displayed by the combination of
dashed and solid lines

Table 3 Regression performance obtained by leave-one-out cross validation in three assays from the EDKB
evaluated by mean absolute error (MAE) and Q2. Note that for MAE, lower values indicate better prediction,
which is vice versa for Q2. We obtained the results of MGK, freqSVM and gBoost from our implementations,
but the other results are quoted from the literature. The best results are highlighted in bold fonts

Measure CoMFA (Hong et al. 2003 MGK freqSVM gBoost

Shi et al. 2001)

EDKB-AR MAE – 0.229 0.193 0.183

Q2 0.571 0.346 0.465 0.621

EDKB-ER MAE – 0.320 0.268 0.263

Q2 0.660 0.267 0.532 0.541

EDKB-ES MAE – 0.322 0.248 0.216

Q2 – 0.522 0.588 0.753

MOLFEA Helma et al. (2004) used MOLFEA with four different minimum support
thresholds {1%,3%,5%,10%} without size constraints to generate path features. Four dif-
ferent machine learning algorithms are subsequently applied in 10-fold cross validation set-
tings. Used algorithms are decision tree C4.5 (Quinlan 1993), PART rule learner (Frank and
Witten 1998), SVM with the linear kernel and the second order polynomial kernel. At mini-
mum support 5%, a linear SVM achieved the best accuracy 0.785 in 10-fold cross validation
(Table 3 in Helma et al. 2004).

Gaston Kazius et al. (2006) used Gaston to find substructures of arbitrary size which ap-
peared in more than 70 transactions. For classification, a series of decision trees is employed,
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Table 4 Influence of the choice of ν parameter. P: the number of active patterns, T: the size of the tree-shaped
search space, ITR: the number of iterations, ρ: the margin in (2), TrACC: the classification accuracy in the
training set

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P 317 225 173 106 63 37 19 7

T 21766 21825 19083 16026 11330 6723 2753 1754

ITR 328 235 178 110 65 39 21 9

ρ 0.00859 0.0116 0.0200 0.0340 0.0695 0.121 0.4 0.6

TrACC 0.999 0.965 0.924 0.883 0.838 0.803 0.712 0.709

each of which corresponds to a subgraph pattern. The authors measured the 10-fold cross
validation error, and the best accuracy was 0.79 (Table 3 in Kazius et al. 2006).

CPM In correlated pattern mining (CPM) by Bringmann et al. (2006), different pattern
languages are compared to investigate the trade-off between the expressiveness and the per-
formance. As a pattern language, (i) itemset, (ii) multi-itemset, (iii) sequence, (iv) tree and
(v) graph are considered. For each pattern language, top 1, 10, 100, 1000 correlated features
are mined according to the χ2 measure. Then the performances of these features are tested
by four algorithms in 10-fold cross validation. The algorithms are C4.5 (Quinlan 1993),
SVM, Naive Cohen (1995). We selected the best accuracies from Table 4 and 5 of (Bring-
mann et al. 2006). SVM with sequence patterns achieved the best accuracy both in CAS and
CPDB, leading to the accuracy 0.801 and 0.760, respectively. In AIDS, C4.5 with sequence
patterns was the best (0.832).

4.2 Regression (QSAR analyses)

We used three datasets (AR, ER and ES) from Endocrine Disruptors Knowledge Base
(EDKB).6 A summary of the datasets in shown in Table 1. We compared gBoost with
MGK and Comparative Molecular Field Analysis (CoMFA) (Hong et al. 2003; Shi et al.
2001). We evaluated the performance of MGK, freqSVM and gBoost with our own im-
plementations, and quoted the reported performance of CoMFA from the literature. For
gBoost, the regularization parameter C is chosen from {0.1,1,10,100,1000,10000}. For
freqSVM, minimum support threshold is set to 1, and the regularization parameter C is
chosen from {0.1,1,10,100,1000,10000}. For MGK, the termination probability is chosen
from {0.1, . . . ,0.9}, then obtained kernel is fed into SVR where the tube parameter ε is set
to 0.1, the regularization parameter C is chosen from {0.1,1,10,100,1000,10000}. gBoost
performed best when setting C parameter to 100 for all three datasets, and built regressor
consisting of 36, 50 and 30 patterns on average for AR, ER and ES, respectively.

Table 3 summarizes the experimental results. The regression models are evaluated by the
mean absolute error (MAE) and the Q2 score:

Q2 = 1 −
∑l

n=1(yn − f (xn))
2

∑l

n=1(yn − 1
l

∑l

n=1 yn)2
. (19)

Our method (gBoost) performed constantly better than MGK and freqSVM, and better
than CoMFA in AR. On the other hand, in ER, CoMFA was superior to other methods.

6http://edkb.fda.gov/databasedoor.html.

http://edkb.fda.gov/databasedoor.html
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In CoMFA, all training compounds are aligned to a template compound, which is manually
picked up by an expert. Then, each compound is encoded into a high dimensional feature
vector describing the steric and electrostatic intersections with the template compound. Thus
CoMFA is not a fully automatic method, and it assumes that training compounds are close
to each other. The result in ER suggests that the energy features are useful for learning, but
at the same time, it seems difficult to incorporate such features into our framework without
experts’ intervention.

5 Computational costs

Our method tightly couples the mathematical programming and graph mining. However, the
same prediction rule can be obtained by the following “naïve” method:

1. The feature space is completely constructed by frequent substructure mining.
2. The mathematical program is solved by column generation.

To motivate the use of our method, it is essential to empirically show that our method is
more efficient in time. Certainly our method has a smaller search space due to the pruning
condition, but the question is how much the pruning condition can contribute in reducing
the computation time in real datasets.

We compared the computational time and the test set accuracy of the naïve method and
the proposed progressive method. Those two methods produce exactly the same series of
reduced linear programs. So we subtracted the time needed to solve the linear programs
from the total computational time. The remaining time (i.e., mining time) is for constructing
and traversing the search space. The results for a range of maxpat constraints in the CPDB
dataset are summarized in Figs. 5 and 6. In this experiment, no minimum support constraints
are employed. The test accuracy reaches the highest level around maxpat = 4, and already
at this point, the mining time shows substantial difference. Notice that the time is plotted
in the log-scale. Even in the case that small patterns can achieve good accuracy, it makes
sense to explore larger patterns for better interpretability. In fact, the toxicophore contains
many patterns having more than 4 edges (Kazius et al. 2006). We found that the maxpat is
typically set to 10 or more in literature (Wale and Karypis 2006; Helma et al. 2004; Kazius
et al. 2006). In this domain, our mining time is more than 10 times smaller.

Fig. 5 Test set accuracy and the number of active patterns against the maxpat parameter. The accuracy is
computed by 10-fold cross validation in the CPDB dataset
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Fig. 6 Comparison in computational costs. In the left panel, the tree size refers to the number of nodes in the
search space. In the right panel, the mining time is plotted respectively for the progressive and naïve methods.
The LP time is identical for the two methods, thus depicted as a single curve

Fig. 7 Learning curves for
AdaBoost and LPBoost in the
CPDB dataset. Each curve shows
the number of patterns included
in the decision function. LPBoost
converged at iteration 356.
AdaBoost needs more iterations
to select the same number of
patterns since it often selects the
same pattern

6 Comparison to AdaBoost

In our previous paper, we used AdaBoost to classify graphs (Kudo et al. 2005). However,
since the AdaBoost updates only one weight parameter per iteration, it requires much more
iterations to converge (Demiriz et al. 2002). In numerical data, the number of iterations is
not a serious problem, because the optimal feature search is trivial. However, since a pattern
search algorithm is called in our case, it is important to minimize the number of iterations.
Figure 7 displays the faster convergence of LPBoost.

7 Conclusion

We have presented a mathematical programming-based learning method for graph data. Our
algorithm is designed such that the search space is pruned autonomously, not by external
constraints. It consists of two tightly-coupled components: the machine learning part that
solves the mathematical program and the graph mining part that finds optimal patterns. It
was shown that our tight integration of graph mining and machine learning leads to better
efficiency in comparison with the naïve integration.

However, we have to point out that the search technique employed here can further be
improved. Combinatorial search is a mature research field and there have been a lot of meth-
ods proposed so far. Compared to those sophisticated methods, our pattern search strategy



86 Mach Learn (2009) 75: 69–89

is still fundamental. For example, a standard A∗ algorithm can be applied for even better
results than reported in Sect. 5.

In this paper, we did not use multiple pricing, which was used in our previous pa-
per (Saigo et al. 2006). In multiple pricing, the top k patterns are added to the dual problem,
not just one. When the search space is not reused, the multiple pricing is effective in re-
ducing the computational time. However, when the search space is progressively expanded,
each pattern search becomes much more efficient and the effect of multiple pricing is no
longer significant. It also leads to more constraints in the dual problem, which increases the
LP time.

In (Saigo et al. 2006), we introduced additional constraints to the linear programming
to describe chemical compounds with unobserved activities. After publication of (Saigo et
al. 2006), we found that the accuracy gain by such additional constraints is not significant
empirically. So, we did not include the topic in this paper. Nevertheless, it is an advantage
of our mathematical programming-based framework that additional constraints can be in-
corporated easily.

Our approach is very general, because one can generalize any mining algorithm to a
boosting algorithm. In future work, we would like to try many different combinations. From
the mining side, one can try itemset mining, tree mining, sequence mining and so forth.
From the learning side, many supervised and unsupervised algorithms are readily described
as mathematical programs (Yuan and Casasent 2003; Cai and Hofmann 2004; Rätsch et al.
2002). Certainly many of them can be easily combined with mining algorithms.

The source code in C++ and Matlab is available from http://www.kyb.mpg.de/bs/people/
nowozin/gboost/.
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Appendix: DFS Code Tree

Algorithm 2 finds the optimal pattern which optimizes a score function. To this end, we need
an intelligent way of enumerating all subgraphs of a graph set. This problem is highly non-
trivial due to loops: One has to avoid enumerating the same pattern again and again. In this
section, we present a canonical search space of graph patterns called DFS code tree (Yan and
Han 2002b), that allows to enumerate all subgraphs without duplication. In the following,
we assume undirected graphs, but it is straightforward to extend the algorithm for directed
graphs.

DFS code The DFS code is a string representation of a graph G based on a depth first
search (DFS). According to different starting points and growing edges, there are many
ways to perform the search. Therefore, the DFS code of a graph is not unique. To derive
a DFS code, each node is indexed from 0 to n − 1 according to the discovery time in the
DFS. Denote by Ef the forward edge set containing all the edges traversed in the DFS, and
by Eb the backward edge set containing the remaining edges. Figure 8 shows two different
indexing of the same graph.

After the indexing, an edge is represented as a pair of indices (i, j) together with vertex
and edge labels, e = (i, j, li , lij , lj ) ∈ V × V × LV × LE × LV , where V = {0, . . . , n − 1},

http://www.kyb.mpg.de/bs/people/nowozin/gboost/
http://www.kyb.mpg.de/bs/people/nowozin/gboost/
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Fig. 8 Depth first search and
DFS code of graph. (a) A graph
example. (b), (c) Two different
depth-first-searches of the same
graph. Red numbers represent the
DFS indices. Bold edges and
dashed edges represent the
forward edges and the backward
edges respectively

LV and LE are the set of vertex and edge labels, respectively. The index pair is set as i < j ,
if it is an forward edge, and i > j if backward. It is assumed that there are no self-loop
edges. To define the DFS code, a linear order ≺T is defined among edges. For the two edges
e1 = (i1, j1) and e2 = (i2, j2), e1 ≺T e2 if and only if one of the following statements is true:

1. e1, e2 ∈ Ef , and (j1 < j2 or i1 > i2 ∧ j1 = j2).
2. e1, e2 ∈ Eb , and (i1 < i2 or i1 = i2 ∧ j1 < j2).
3. e1 ∈ Eb, e2 ∈ Ef , and i1 < j2.
4. e1 ∈ Ef , e2 ∈ Eb , and j1 ≤ i2.

The DFS code is a sequence of edges sorted according to the above order.

Minimum DFS Code Since there are many possible DFS codes, it is necessary to determine
the minimum DFS code as a canonical representation of the graph. Let us define a linear
order for two DFS codes α = (a0, . . . , am) and β = (b0, . . . , bn). By comparing the vertex
and edge labels, we can easily build a lexicographical order of individual edges ai and bj .
Then, the DFS lexicographic order for the two codes is defined as follows: α < β if and
only if either of the following is true,

1. ∃t,0 ≤ t ≤ min(m,n), ak = bk for k < t, at < bt .
2. ak = bk for 0 ≤ k ≤ m and m ≤ n.

Given a set of DFS codes, the minimum code is defined as the smallest one according to the
above order.

Right most extension As in most mining algorithms, we form a tree where each node has a
DFS code, and the children of a node have the DFS codes corresponding to the supergraphs.
The tree is generated in a depth-first manner and the generation of child nodes of a node is
done according to the right most extension (Yan and Han 2002b). Suppose a node has the
DFS code α = (a0, a1, . . . , an) where ak = (ik, jk). The next edge an+1 is chosen such that
the following conditions are satisfied:

1. If an is a forward edge and an+1 is a forward edge, then in+1 ≤ jn and jn+1 = jn + 1.
2. If an is a forward edge and an+1 is a backward edge, then in+1 = jn and jn+1 < in.
3. If an is a backward edge and an+1 is a forward edge, then in+1 ≤ in and jn+1 = in + 1.
4. If an is a backward edge and an+1 is a backward edge, then in+1 = in and jn < jn+1.

For every possible an+1, a child node is generated and the extended DFS code (a0, . . . , an+1)

is stored. The extension is done such that the extended graph is included in at least one graph
in the database.

For each pattern, its embeddings to all graphs in the database are maintained. Whenever
a new pattern is created by adding an edge, the list of embeddings is updated. Therefore, it
is not necessary to perform isomorphism tests whenever a pattern is extended.
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DFS code tree The DFS code tree, denoted by T, is a tree-structure whose node represents
a DFS code, the relation between a node and its child nodes is given by the right most
extension, and the child nodes of the same parent is sorted in the DFS lexicographic order.

It has the following completeness property. Let us remove from T the subtrees whose
root nodes have non-minimum DFS codes, and denote by Tmin the reduced tree. It is proven
that all subgraphs of graphs in the database are still included in Tmin (Yan and Han 2002b).
This property allows us to prune the tree as soon as a non-minimum DFS code is found.
In Algorithm 2, the minimality of the DFS code is checked in each node generation, and
the tree is pruned if it is not minimum (line 9). This minimality check is basically done by
exhaustively enumerating all DFS codes of the corresponding graph. Therefore, the compu-
tational time for the check is exponential to the pattern size. Techniques to avoid the total
enumeration are described in Sect. 5.1 of (Yan and Han 2002b), but still it is the most time
consuming part of the algorithm.
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